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Abstract. The study of a system of hard rods in a box of finite length in the presence of a uniform
gravitational field is made by means of the microcanonical ensemble. Explicit expressions are derived for
the phase volume and the density of states, the primary functions of this ensemble. Related statistical
quantities are reported, such as the entropy, the temperature, the heat capacity and the forces exerted on
the fluid by the bottom and top walls. The microcanonical number density and higher order molecular
distribution functions are also derived.

PACS. 05.20.Gg Classical ensemble theory

1 Introduction

One-dimensional systems often provide exactly solvable
models which might serve as guides to higher dimensional
problems. In particular, the hard-rod system has proved
to be very useful in the study of the structure of inhomo-
geneous fluids. This is the case of a system of hard rods
under gravity which can be useful, for example, in the
analysis of equilibrium sedimentation profiles of colloidal
suspensions in a gravitational field [1].

A semi-infinite system of hard rods confined to the
region z > 0 by a hard wall at z = 0 in the presence
of an arbitrary external field was reported by Percus [2],
who obtained an equation for the density profile of hard
rods in the grand canonical ensemble. A finite system, in
which the hard rods are confined in a box of finite length
in the presence of a uniform gravitational field, has been
very recently reported by Ibsen et al. [3]. These authors
obtained explicit expressions, in the canonical ensemble,
for the forces exerted on the fluid by the bottom and top
walls and, both in the canonical and in the grand canon-
ical ensembles, for the number density and higher order
molecular distribution functions.

In the present work we consider the microcanonical
ensemble study of a finite system of hard rods in a grav-
itational field. Nowadays it has been recognized the in-
terest of applying the microcanonical method to specific
systems. Some possible reasons of this interest are the fol-
lowing. First, the study of ensemble differences between
microcanonical and canonical expressions and their equiv-
alence in the thermodynamic limit. Second, the fact that
many computer simulations have been designed for fi-
nite systems having a constant total energy [4], and thus
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requiring the microcanonical expressions for a correct in-
terpretation of the computer results. Third, the necessity
of developing practical analytical methods to work out in
the microcanonical ensemble which can be applied to new
problems as they arise.

The structure of the paper is as follows. Section 2 is
devoted to the calculation of the phase volume and the
density of states for the system under consideration. These
expressions are used in Section 3 for calculating the en-
tropy, the temperature, the forces exerted on the fluid by
the bottom and top walls, and the heat capacity of the
system in the microcanonical ensemble. In Section 4, ex-
plicit expressions for the microcanonical molecular distri-
bution functions are derived, and the main features of the
number density profile are analyzed. We compare numer-
ically the expressions obtained both for the forces exerted
by the walls and for the number density with the canon-
ical ones reported by Ibsen et al. [3]. Some conclusions
are summarized in Section 5. This paper follows closely
the ideas presented in reference [5] for an ideal gas under
the influence of a gravitational field in the microcanonical
ensemble.

2 Microcanonical ensemble

We consider a system of N hard rods of massm and length
σ in a linear box of length L in the presence of a uniform
gravitational field of strength g. The Hamiltonian of the
system takes the form:

H(zN ,pN ) =
N∑
i=1

p2
i

2m
+ U(zN ; z0, zN+1) (1)
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where (zN ,pN ) ≡ (z1, ..., zN ; p1, ..., pN ) denote the posi-
tion of the centers and the momentum of the hard rods
and the total potential energy is given by

U(zN ; z0, zN+1) =
∑
i<j

u(|zj − zi|) +
N∑
i=1

mgzi

+
N∑
i=1

Uw(zi; z0, zN+1) ,

(2)

where

u(|zj − zi|) =

∞ , |zj − zi| < σ

0 , |zj − zi| ≥ σ
(3)

is the interparticle pair potential, and

Uw(zi; z0, zN+1) =

 0 , z0 + σ ≤ zi ≤ zN+1 − σ

∞ , otherwise
(4)

is the potential due to the bottom and top walls of the box
and where z0 and zN+1 are the positions of the centers of
fixed hard rods that define the bottom wall and the top
wall, respectively, so that zN+1−z0 = L+σ. The positions
of the hard rods verify: z1 < ... < zN and zN−z1 ≤ L−σ.

Assuming that the macrostate of the system is defined
by a constant energy E, a fixed length L, and a fixed num-
ber of particles N , its statistical thermodynamic study
must be made in the microcanonical ensemble framework.
The primary functions of this ensemble are the phase vol-
ume, Φ(E,L,N), and the density of states, Ω(E,L,N),
defined by

Φ(E,L,N) =
1

hN

∫
...

∫
Θ [E −H(zN ,pN )] dzNdpN ,

(5)

Ω(E,L,N) =
1

hN

∫
...

∫
δ [E −H(zN ,pN )] dzNdpN

=

(
∂Φ(E,L,N)

∂E

)
L,N

, (6)

where dzNdpN ≡ dz1...dzNdp1...dpN , h is the Planck con-
stant, Θ(x) is the Heaviside step function and δ(x) is the
Dirac delta function. The microcanonical average of any
dynamical function A(zN ,pN ) is obtained from

〈A〉 =
1

hNΩ(E,L,N)

∫∫
A(zN ,pN )

× δ [E −H(zN ,pN )] dzNdpN .

(7)

Taking into account the Hamiltonian (1) and introducing
variables xk = zk − (z0 + kσ), integration over momenta

in (5) gives

Φ(E,L,N) =
(2πm)

N/2

hNΓ
(
N
2 + 1

) ∫ L̄

0

dxN

×

∫ xN

0

dxN−1...

∫ x2

0

dx1

(
E −mgα−mg

N∑
i=1

xi

)N/2

×Θ

(
E −mgα−mg

N∑
i=1

xi

)
, (8)

where Γ (x) is the Euler gamma function and

α = Nz0 +
N(N + 1)

2
σ , (9)

L̄ ≡ xN+1 = zN+1 − z0 − (N + 1)σ = L−Nσ .
(10)

The integrals in (8) can be evaluated by using the Laplace-
transform technique [5,6]. A straightforward calculation
leads to

Φ(E,L,N) ≡ Φ(z0, zN+1;N)

=
(2πm)

N
2

hN (mg)NΓ (N + 1)Γ (3N
2 + 1)

× φN (E−mgα,mgL̄, 0, 0), (11)

where we have defined

φN (a, b, n, ν)≡

N∑
k=0

(−1)k
(
N

k

)
kn (a−kb)

3N
2 − ν Θ (a−kb)Θ(b). (12)

We note the dependence of the phase volume (11) on z0

and zN+1 through the parameters α and L̄ given by equa-
tions (9, 10), respectively.

From equations (6, 11), we obtain

Ω(E,L,N) ≡ Ω(z0, zN+1;N)

=
(2πm)

N
2

hN(mg)NΓ (N + 1)Γ (3N
2 )

× φN (E −mgα,mgL̄, 0, 1) ,
(13)

for the density of states. In the case of a column of infinite
height, L→∞, expression (13) leads to

Ω(E,N) =
(2πm)N/2

hN (mg)NΓ (N + 1)Γ
(

3N
2

)
× (E −mgα)

3N
2 −1Θ(E −mgα) .

(14)

This expression is also valid for systems with finite height
but with energies small enough so that E −mgα ≤ mgL̄.
In this case the hard rods never reach the top wall and the
system becomes L-independent. This is a characteristic of
the microcanonical ensemble study.
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3 Thermodynamic study

3.1 Entropy, temperature and heat capacity

In the microcanonical ensemble there are several def-
initions for the entropy. One of them, based on both
the theorem of adiabatic invariance of phase volume
and on the fact that it yields exactly the equipartition
theorem [6], is

S(E,L,N) = kB lnΦ(E,L,N) . (15)

We will take the entropy definition (15) for deriving all
equations reported in this section. From equations (11,
15) one then obtains,

S(E,L,N) = S0(E,L,N) + Sexc(E,L,N) ,
(16)

where

S0(E,L,N) = kB ln

[
(L−Nσ)N (2πmE)N/2

hNΓ (N + 1)Γ
(
N
2 + 1

)],
(17)

is the microcanonical entropy of the system of hard rods
in absence of gravity, and

Sexc(E,L,N) ≡ Sexc(y,N)

=kB ln

 Γ (N2 +1
)

Γ
(

3N
2 +1

) (E−mgα)
N
2

E
N
2

φN (1, y, 0, 0)

yN

, (18)

is the excess entropy due to the presence of a uniform
gravitational field, and where

y =
mgL̄

E −mgα
=

¯̀

σg
, (19)

with

¯̀=
L̄

N
=
L

N
− σ , (20)

and

σg =
E −mgα

Nmg
, (21)

being characteristic lengths of the system. From expres-
sion (18) one can make an analysis of the ordering effect
of the gravitational field, similar to the one reported in
reference [5] for the ideal gas case (see also [7,8]).

In the microcanonical ensemble, the statistical temper-
ature of the system is defined by

1

kBT
=

1

kB

(
∂S

∂E

)
L,N

=

(
∂ lnΦ

∂E

)
L,N

=
Ω

Φ
·

(22)

From equations (11, 13), one easily obtains

kBT =
2

3N

φN (E −mgα,mgL̄, 0, 0)

φN (E −mgα,mgL̄, 0, 1)

=
2(E −mgα)

3N

φN (1, y, 0, 0)

φN (1, y, 0, 1)
· (23)

Equation (23) shows that a hard-rod fluid has the same
microcanonical temperature than a one-dimensional ideal
gas with energy E′ = E −mgα in a box of length L̄ [5].

Taking into account equations (6, 22), in the micro-
canonical ensemble the heat capacity CL at constant L
and N can be obtained in terms of the density of states
Ω(E,L,N),

CL =

(
∂T

∂E

)−1

L,N

= NkB

[
N −NkBT

(
∂ lnΩ

∂E

)
L,N

]−1

.
(24)

From equations (13, 23, 24) one obtains

CL

NkB
=

[
N −

(
3N − 2

3

)
φN (1, y, 0, 0)φN(1, y, 0, 2)

φ2
N (1, y, 0, 1)

]−1

,
(25)

with φN (a, b, n, ν) given by (12). Expression (25) is iden-
tical to the one obtained for the ideal gas case with energy
E′ = E −mgα in a box of length L̄ [5].

3.2 Forces exerted by the walls of the box

The force exerted on the fluid by the bottom and top walls
can be obtained by deriving the entropy w.r.t. the posi-
tions of the walls z0 and zN+1, respectively. From equa-
tions (11), and taking into account equations (9, 10), one
obtains:

Fb

kBT
= −

1

kB

∂S

∂z0
= −

∂ lnΦ

∂z0

= mg
3N

2

[
NφN (E −mgα,mgL̄, 0, 1)

φN (E −mgα,mgL̄, 0, 0)

−
φN (E −mgα,mgL̄, 1, 1)

φN (E −mgα,mgL̄, 0, 0)

]
, (26)

Ft

kBT
=

1

kB

∂S

∂zN+1
=

∂ lnΦ

∂zN+1

= −mg
3N

2

φN (E −mgα,mgL̄, 1, 1)

φN (E −mgα,mgL̄, 0, 0)
· (27)

From these equations and using (23), one obtains:

Fb = mgN

[
1−

1

N

φN (1, y, 1, 1)

φN (1, y, 0, 1)

]
, (28)

Ft = −mg
φN (1, y, 1, 1)

φN (1, y, 0, 1)
· (29)

One can see that Fb − Ft = mgN , i.e., the weight of the
system and thus mechanical equilibrium is fulfilled. From
equations (26, 27) one easily obtains the two expected
limit results

Fb = Ft =
2E

L̄
=

NkBT

L−Nσ
for g → 0 ,

(30)



424 The European Physical Journal B

n(z) =
(2πm)N/2

hN (mg)N−1Γ
(

3N
2 − 1

)
Ω(z0, zN+1;N)

N∑
j=1

1

Γ (j)Γ (N − j + 1)

j−1∑
j1=0

N−j∑
j2=0

(−1)j1+j2

(
j − 1

j1

)(
N − j

j2

)
×
[
E −mgz −mgbj − j1mgξj − j2mg(L̄− ξj)

] 3N
2
−2

×Θ
[
E −mgz −mgbj − j1mgξj − j2mg(L̄− ξj)

]
Θ(ξj)Θ(L̄− ξj), (36)
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Fig. 1. Microcanonical (solid lines) and canonical (dashed
lines) reduced force Fb/mgN as a function of y = ¯̀/σg , for
N = 3, 5 and 10. Microcanonical curves have been obtained
from (28), while canonical curves have been obtained from ex-
pression (8) of reference [3] and (23). The inset shows the dif-
ference between canonical (c) and microcanonical (m) results.

Fb = mgN Ft = 0 for y ≥ 1 (E −mgα ≤ mgL̄).
(31)

Figure 1 shows the microcanonical (solid lines) dimension-
less force Fb/Nmg as a function of y for different values
of N . We can see that at given N , Fb/Nmg decreases as
y increases (larger g, larger L̄ and/or smaller E −mgα).
In this figure the corresponding canonical dimensionless
force obtained by substituting kBT/mg given by (23) in
the expression reported by Ibsen et al. [3] is also plotted
(dashed lines). The difference between canonical and mi-
crocanonical forces is shown in the inset of Figure 1. We
can see that microcanonical results approach the canoni-
cal ones very quickly as N increases.

4 Microcanonical molecular distribution
functions

The number density of hard rods at a given height z can
be derived from its definition as an ensemble average:

n(z) =

〈
N∑
j=1

δ(zj − z)

〉
. (32)

By using (7), we can write

〈δ(zj − z)〉 =
Ωj(E −mgz; z)

hNΩ(z0, zN+1;N)
, (33)

where Ω(z0, zN+1;N) is given by (13), and

Ωj(E −mgz; z) =
∂Φj(E −mgz; z)

∂E
· (34)

with

Φj(E −mgz; z) =

∫
...

∫
Θ
[
E −

N∑
i=1

p2
i

2m

− U(z1, ..., zj−1; z0, z)− U(zj+1, ..., zN ; z, zN+1)
]

× dz1...dzj−1dzj+1...dzNdp1...dpN , (35)

where U(z1, ..., zj−1; z0, z) and U(zj+1, ..., zN ; z, zN+1) are
given by (2). This function can be evaluated following a
procedure similar to the one used for the phase volume
(8). Substituting Φj into (34), and using equations (32,
33), we obtain

see equation (36) above

for the microcanonical number density for a finite system
of hard rods under gravity, where

bj = (j − 1)z0 + (N − j)z +
(j − 1)j

2
σ

+
(N − j)(N − j + 1)

2
σ ,

(37)

ξj = z − z0 − jσ . (38)

In the limit (g → 0), expression (36) becomes:

n0(z)

=
N

L̄N

N∑
j=1

(
N − 1

j − 1

)
ξj−1
j (L̄− ξj)

N−jΘ(ξj)Θ(L̄− ξj) ,
(39)

which gives the number density reported by Leff et al. [9]
using the canonical ensemble for a system of hard rods in
a box of finite length in absence of gravity.

The shape of the microcanonical number density (36)
is governed by the characteristic lengths ¯̀and σg given by
equations (20, 21), respectively. Figure 2 shows the den-
sity profile (36) for L = 15σ and different values of σg and
N . For σg > ¯̀ both parameters influence the profile. In
this case, the onset of a oscillatory structure is governed
by ¯̀ (absence of structure for large values of ¯̀ and in-
creasing number of oscillations as ¯̀ tends to zero), while
the symmetry of the profile is governed by σg (for σg � ¯̀

the profile is practically symmetrical about the centre of
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Fig. 2. Microcanonical (solid lines) and canonical (dashed lines) number density n(z) as a function of height z, for N = 3, 5
and 10. Microcanonical curves have been obtained from (36), while canonical curves have been obtained from expression (A1)
of reference [3] for the corresponding values of kBT/mg given by (23). For the cases of the left column σg = L while for the
cases of the right column σg = 0.1L. In all cases L = 15σ, z0 = −σ/2 and the distances are measured in units of rod length (σ).

the box showing slight deviations from the profile density
(39) in absence of gravity; the asymmetry increases as σg
decreases). For σg < ¯̀, the hard rods have not enough
energy to reach the top wall, so that the profile density
becomes ¯̀-independent and its shape is only governed by
σg. In this case, as σg decreases the number of oscillations
increases, compressing the oscillatory structure to the bot-
tom wall direction and showing an exponential decay to
zero with height. Figure 2 also shows the canonical density
profiles obtained from the expression reported by Ibsen et
al. [3] for the corresponding values of kBT/mg obtained
from (23). One can see that microcanonical density pro-
files approach the canonical ones as σg and N increase.

The contact values of the microcanonical number den-
sity follow from (36) by taking into account that for
z = z0 +σ and for z = zN+1−σ only the terms j = 1 and

j = N , respectively, contribute to the sum over j. One
easily finds:

n(z0 + σ) = mg

(
3N

2
− 1

)[
NφN (E −mgα,mgL̄, 0, 2)

φN (E −mgα,mgL̄, 0, 1)

−
φN (E −mgα,mgL̄, 1, 2)

φN (E −mgα,mgL̄, 0, 1)

]
, (40)

n(zN+1−σ) =

−mg

(
3N

2
−1

)
φN (E−mgα,mgL̄, 1, 2)

φN (E−mgα,mgL̄, 0, 1)
, (41)

where we have used (13), and φN (a, b, n, ν) is given by
(12). By comparing expressions equations (40, 41) with
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n(k)(z1, ..., zk) =
(2πm)N/2

hN (mg)N−kΓ
(

3N
2
− k + 1

)
Ω(z0, zN+1;N)

∑
i1<...<ik

1

Γ (i1)Γ (i2 − i1)...Γ (N − ik + 1)

×
i1−1∑
j1=0

i2−i1−1∑
j2=0

...

N−ik∑
jk+1=0

(−1)j1+...+jk+1

(
i1 − 1

j1

)(
i2 − i1 − 1

j2

)
...

(
N − ik
jk+1

)

×

[
E −mg

k∑
i=1

zi −mgbi1,..,ik − j1mgξi1 −
k∑

n=2

jimg(ξin − ξin−1)− jk+1mg(L̄− ξik)

] 3N
2
−k−1

× Θ

[
E −mg

k∑
i=1

zi −mgbi1,..,ik − j1mgξi1 −
k∑
i=2

jimg(ξin − ξin−1)− jk+1mg(L̄− ξik)

]
×Θ(ξi1)Θ(ξi2 − ξi1)...Θ(L̄− ξik) . (49)

equations (26, 27), respectively, one finds that the con-
tact values of the number density are not proportional
to the forces on the corresponding wall when these forces
are derived from the entropy definition (15). This was ex-
pected, since the number density n(z) has been derived
from a microcanonical average while the entropy defini-
tion (15) is based on the theorem of adiabatic invariance
of the phase volume and not on a microcanonical average.
An entropy definition based in an ensemble average is the
Gibbs entropy

S = −kB〈ln ρ〉 = kB lnΩ , (42)

where ρ = Ω−1δ (E −H) is the microcanonical density
function. From (42), and using (13), we obtain:(

1

kBT

)
Ω

=

(
∂ lnΩ

∂E

)
L,N

=

(
3N

2
− 1

)
φN (E −mgα,mgL̄, 0, 2)

φN (E −mgα,mgL̄, 0, 1)
,

(43)

(
Fb

kBT

)
Ω

= −
∂ lnΩ

∂z0

= mg

(
3N

2
− 1

)[
NφN (E −mgα,mgL̄, 0, 2)

φN (E −mgα,mgL̄, 0, 1)

−
φN (E −mgα,mgL̄, 1, 2)

φN (E −mgα,mgL̄, 0, 1)

]
, (44)

(
Ft

kBT

)
Ω

=
∂ lnΩ

∂zN+1

= −mg

(
3N

2
− 1

)
φN (E −mgα,mgL̄, 1, 2)

φN (E −mgα,mgL̄, 0, 1)
, (45)

where the subscript Ω denotes the use of the entropy def-
inition (42). Notice that equations (44, 45) coincide now
with the contact values equations (40, 41), respectively.
From equations (43–45) we also obtain

(Fb)Ω = mgN

[
1−

φN (1, y, 1, 2)

NφN (1, y, 0, 2)

]
, (46)

(Ft)Ω = −mg
φN (1, y, 1, 2)

NφN(1, y, 0, 2)
, (47)

so that (Fb − Ft)Ω = mgN . As it is well-known definitions
(15, 42) for the entropy agree to order ln(N), and so one
can check that expressions (23, 43) for the temperature,
equations (26, 44) for the force on the bottom wall, and
equations (27, 45) for the force on the top wall, are in
agreement to order 1/N and so they are equivalent in the
thermodynamic limit.

Higher order molecular distribution functions can be
derived in a similar way from their definition as a micro-
canonical ensemble average

n(k)(z1, ..., zk) =

〈 ∑
i1,...,ik

δ(zi1 − z1)...δ(zik − zk)

〉
,
(48)

where, since the coordinates verify the relation z1 < ... <
zk, only the terms satisfying i1 < ... < ik contribute to the
sum. Following the same procedure as in the derivation of
(36), we obtain:

see equation (49) above

where

bi1,..,ik = (i1 − 1)z0 + (i2 − i1)z1 + ...+ (N − ik)zk

+
(i1 − 1)i1

2
σ +

(i2 − i1)(i2 − i1 + 1)

2
σ + ...

+
(N − ik)(N − ik + 1)

2
σ , (50)

ξin = zn − z0 − inσ . (51)

One easily checks that (49) reduces to (36) for k = 1.

5 Conclusions

Since statistical ensembles are equivalent in the thermo-
dynamic limit, the thermodynamic study of any exactly
solvable system model can be made in any of them. The
election of an specific ensemble is usually related with the
complications arising from analytic work. In this way, al-
though one might consider the microcanonical ensemble
as the more fundamental description of a system (since it
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does not require the consideration of any kind of reser-
voir), the canonical and grand canonical ensembles are
more usual than the microcanonical one. However, when
different ensembles are applied to systems with a small
number of particles the obtained results can be different,
and there is an intrinsic interest in analyzing the difference
between those results (the so-called explicit size effects).
This analysis can be of importance not only for the correct
interpretation of computer simulation results but also for
systems confined to regions of molecular size.

In the above context, this paper has been devoted
to apply the microcanonical ensemble framework to the
study of a system of hard rods confined in a linear box
of finite length in the presence of a uniform gravitational
field. A thermodynamic analysis of this system, includ-
ing molecular distribution functions, has been recently re-
ported by Ibsen et al. [3] both in the canonical and in
the grand canonical ensembles. Therefore, this paper is
somewhat complementary to the work of these authors.

The main results of the present paper are the fol-
lowing: (1) Derivation of explicit expressions for the
phase volume and the density of states. Calculations are
based on the use of the Laplace transform technique
to perform the phase integrals over the configurational
coordinates. (2) Closed expressions for the entropy, the
temperature, the forces exerted on the fluid by the end
walls, and the heat capacity are derived. A key parameter
in the behaviour of these quantities is y = ¯̀/σg, where
¯̀ and σg are characteristic lengths associated to the
space and the energy available per hard rod, respectively.
Entropy, temperature and heat capacity show the same
behaviour with y than the ones previously reported for
the ideal gas case [5], while the microcanonical force
on the bottom (top) wall increases (decreases) as y
decreases approaching quickly to the canonical result
as N increases. (3) Closed expressions for the number
density n(z) at a given height z and for higher order
molecular distributions are derived from their definitions
as microcanonical ensemble averages. A detailed study
of the dependence of n(z) on the two characteristic lengths

¯̀ and σg is presented. For values of σg smaller than ¯̀ the
profile is ¯̀-independent with increasing oscillatory struc-
ture as σg decreases, while for values of σg greater than ¯̀

both parameters influence the profile. A comparison with
the canonical number density shows that microcanonical
and canonical profiles approach as σg and N increase. (4)
The number density at the ends of the box (contact val-
ues) are proportional to the forces exerted by the fluid on
the corresponding wall when these forces are derived from
the entropy definition in terms of the density of states,
but not to the forces derived from the entropy definition
in terms of the phase volume. This shows an interesting
example about the ambiguity of the entropy definition in
the microcanonical ensemble.
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